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SUMMARY

Tlu variationalprinciple, difieren$ialequutim, and boum?-
aty condition-swwidered appropti to the anuiysis of tran43-
verse wlmi5.ons of hollow thWuwUeo? cylindti beams are
8houm. Generai!solutions for t& modes and freguenc% of
canti!+?vera?d free-free cy?indm”calbeams of arbitrary cro88 8t?+

tion ‘but of uniform thi.+new are given. The mmbinedinjlwnce
of i%e8ewndary e.fect#of ir&n$ver8e$heard.9fomati#n,8hearkg,
and hnqphdinal inertia 2%,shown in % form of oumx for
c@in4i?er8of rectangular 0?08s sec$tm and uniform thickw38.
The conidution of each of the 8ewndary efiects to the total
reduction in i% actual frequency is also indiun?edl

INTRODUCHON ~

The elementary theory of bending vibration is often in-
adequate for the ncourntq calculation of nattial modes and
frequencies of hollow, thin-mdIed cylindrical beams. Such
secondary cflecti ns transveme shear deformation, shear lag,
and longitudinal inertia, whioh are not considered in the
elementary theory of lateral oscilIationsj mm have appre-
ciable influence, particularly on the higher modes and
frequencies of vibration. The effects of transverse shear
deformation and of rotary (rather than longitudinal) inertia
have been studied by many on the basis of the origimd invw-
tigations of Rayleigh (ref. 1) and Timoshenko (ref. 2).
Andemon and Houbolt (ref. 3) have presented a procedure
for inoluding the effects of shear lag in the numerical oalcu-
Mion of modes and frequencies of box, beams of rectangular
cross section. However, there does not appear to exist a
general solution for the vibration of hollow beams that in-
corporates the inliuenca of all the secondary dlects men-
tioned.

The purpose of the present report iE threefold: First, to
exhibit the variational principle, differential equations, and
bounda~ conditions appropriate for the analysis’ of ~he
uncoupled bending vibration of-hollow thin-walled cylindrical,
beams; second, to give general solutions for cantilever and
free-free cylinders of arbitrary cross section but of uniform
thickness; and finally, to show quantitatively th~ influence

of the secondary effects by means of numerical results for
hollow bw of rectangular cross section of various lengths,
widths, and
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SYMBOLS

cross-sectional area
Fourier coficient
eilective shear-WI@IW mea
parameter defined in equation (30)
constant
modulus of elasticity
shear modulus of elasticity
moment of inertia .
geometrkd parameter deiined in equation (29)
length of wmtilever bemh, hidf-kngth of free-

free beam
parameter defined in equation (38)
mmknum kinetic energy
maximum strain energy
halfdepth of rectangular beam
half-width of rectangular beam
Fourier series coefficients
integers

r
&’frequency coeflkient, u ~

rcoeilkient of shear rigidity, $ FQ

---J11
coefhcient of rotary inertia

‘L ~
perimeter of cross section
distance along periphery of cress section (see

fig. 1)
V7allthiokness
longitudinal displacement in z-direction
vertical displacement in ydirection
longitudinal eoordinati
vertical coordinate ‘
y-coordinate of center of gravity of cross section
shear StYSill
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e= longituti strain
e’ inclination of normal with vertical (see fig. 1)
A Lagrangian multiplier
P mass of beam per unit length
P msss density of beam
u longitudinal direct strew .
r shear stress
u naturtd fr@qUOIICyOfbeam
u~ natural frequency of beam calculated from &-

mentary besm theory
8$, Ibnecker delta (1 if i=j; Oif i#j~
P conshaining relationship

BASICEQUATIONS

AssumptioJM.-The problem to be considered is that of
the natural bendbg vibration of a thin-walled hollow
cylindrkal beam whose cross section is symmetrical about at
least one axis (see ~. I). The transverse vibration is sup-
posed to take place in the direction of this axis of symmetry
of the crw section so that no torsional oscillation are
induced.

In the present analysis, the following simplifications are
introduced:

(a) Changes in the size and shape of the cross section are
neglected.

(b) Stress and str+.n.are assumed to be uniform across the
wall thiclmess.

(c) The small eflect of circumferential stress upon longi-
tudinal strain is neglected. -

In accordance with statements (a) and (b), the distortions
of the vibrating beam are completely described by the
vertical displacement w(z) of a orcm section and the longi-
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tudinal displacement U(Z,S)of each point of the median line
of the beam wall. .

The longitudinahand shear strains are given in terms of
U(Z,S)and w(z) as

,.
h

‘==7Z (1)

and

and the corresponding stmasesbecome

and

T==(2 (!#+* sin e)

(2)

(3)
.

(4)

where 6is the inclination of the normal with the vertical (seo
fig. 1).

.,

In elementary beam theory, where the effects of all shmr
distortion are neglected, the longitudinal distortion U(Z,S) is
related to the vertical displacement w(z) by

‘u (Z,s)=(y-y) g

where ij is the y-coordinate of the center of gravity of the
cros9 section. In the present report, however, U(Z,S) is
allowed to be perfectly general, so that shear distortions (and
consequently the so-called shear~l~” and transverse-shear-
deformation efl’eck) me fully-taken into account. Furthm-
more, because cross sections are not constrained tQ remain
pkme, the inertia effect associated with motion in tlm
longitudinal direction is more properly designated as the
effect of kmgi$udindinertia than the effect of rotmy iner~ia.

Variational principle and geometioal boundary oondi-
tions.-The variational equation to be written is appropriate
to beams whose ends are either bed, simply supported, or
free. For some such beam vibrating in a natural mode, the
maximum strain ene~ is,

where u(z,$) and w(z) are the amplitudes of displac~mont for
the particular mode considered. The maximum kinetic
energy is

S$
T=; ,= .

S$
pii?w=a.sax+; ~L pt4&%s ax (6)

/

where u is the natural frequency of the mode under considera-
tion and p is the m- density of the beam. The second
term in equation (6) constitutes the contribution of longi-
tudinal imrtia to the kinetic energy.

A natural mode of vibration must satisfy the variational



equation

where the variation is
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6(U-T)=O (7)

taken independently with respect to
U(Z,S)and w(z) and with the provision that both U(Z,S) and
w(x) must satisfy the geometrical boundary conditions of
the problem; furthermore, u(z,8) must be periodic in the
coordinate s with a period equal to the perimeter p. The
geometrical boundary conditions are w=O and u= O at a
fked end and only w=O at a simply supported end. At a
free end no geodetical boundary conditions are imposed.

Deferential equations and natural bo,undary conditions,—
Equations (5), (6), and (7) in conjunction with the usual
procedure of the calculti of variations yield the following
sindtaneous integrodiilerential equations for u and w:

Et ~+;8
[(

~t au dw )1~+pino +-pih%=o (8)

$(~tw d2w
~z sin e+———

, dx’ )Sid 0 ds+p(h=(l (9)

WI]ere

p=
f

pt (Z!J3 (lo)

and the boundmy equatioti at each end of the beam are

(11)$E’(%b’d8=0“ -
N*tau ‘ dw )Z+zsine Sined$tiw=o (12)

At a fixed end, both boundmy equations (11) and (12) are
smtisfiedby virtue of the fact that the geometrical boundary
conditions require that both h and &wbe zero. At a simply
supported end &o=O, but, since &u(z,s)is perfectly arbitrary,
the vmiational process forces the equali@

(13)

Fiially, at a free end, since there are no geometrical con-
straints, both w and h are arbitmry and hence the varia-
tionrd process forces, in addition to equation (13), the
equality

M%+$+)sin’”=o (14)

Equations (13) and (14) constitute so-called “natural
boundmy conditions” because they me automatically satis-
fied as the result of a variational process. Equation (13) iS
recognized rIsthe condition of zero longitudinal direct stress
while equation (14) simply stipulates that the total vertical
shear force vanish.

Thus to summarize, the appropriate boundsry conditions
required for tho solution of equations (8) and (9) are

Fixed end:
W=o

u= o
Simply supported end:

‘W=()

Free end:

$(~tau dw )~+d#ll 6 Sill 6 ds=o

The i&grccMerential equations (8) and (9), which specify
equilibrium in the longitudinal and transverse directions
respectively, can, of murse, be written directly without
recourm to the variational principle.

GENERALSOLUTIONSFOR CYLINDERSOF UNIFORMWALL
THICKNESS “

The following exact solutions for cylinders of uniform wall
thickness are carried out by means of Fourier series in con-
junction with the application of the variational condition
(eq. (7)). This procedure, which does not require explicit
consideration of the natural boundsry conditions, was
believed to be more expedient than a direct attack upon the
simultaneous integrodiiferential equations (8) and (9) and
all their associated boundary conditions.

Cantilever beam.—The geometrical boundary conditions,
for a cantilever beam, as previously show-n, me

W(0) =U(0,8) = O

(see fig. 1). Appropriate assumptions for the displacements ‘
w(z) and U(Z,S)are

W(x)=c+ g b. Cosng
n-l~s

(15)

and
m . mrx 2nm

u(x,s)= ~ ~ a=n sin — —
2L Cos p (16)

m-l&5 n-O,IJ

The condition u(O,S)=0 is satisfied by each term of equa-
tion (16); the condition

W(6)= c+n=$JJb.= o (17)

is introduced into the variational procedure by means of the
Lagrangkn multiplier method. The choice of the partictim
trigonometric functions used in the Fourier series (15) and
(16) wss guided by consideration of the orthogonality
required for the simplification of expressions in the strain
energy. The constant C is needed in the expression for
w(x) in order that w(L) be unrestricted.
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Using equations (15) and (16) in equations (5) apd (6)
yields

u–r=

~m-d;” equation (18) stationary and at the same. time
satisfy the constraining relationship -

● p=c-+ g b.=o (19)
n-l~s

it is sufficient to set
6(u-T-Ap)=o (20)

where the variation is with respect to the a’s, iYs, and (?
considered as independent variables; here A is a Lagmugian
multiplier. This variational process results in the following
equations:

= o (i=l, 3, 5, . . .) (21)

(i=l, 3, 5, . . .)
(j=o, 1,2, - . .) (22)

As=
$

t sin~8 ck (25)

Wkh the use of the nondimensional

.

and

parameters

(26)

EI
‘B2=Am (27)

11
, kR:=—=—

. ptL2 ALg (28) ‘

K?=yj

()2’Bt2=i2—km2k~2 –
Z

(29)

(30)

equations (21), (22), and (23) may be reduced to “

(– 1)=+ h2C-#==o ‘ (i=l,3,6, ...) (31)

(k.’B?+Hfl (1+M aij+li? & Ajijbi=O
(’i=l,3, 5, . . .)
(j=O, 1,2,.. .) (32)

For j=O, equation (32) becomes

[ (nks2 i=— kB2km2 : afo= O (’i=l,3,6, . . .) (34)

Equation (34) is not coupled to any of equations (31) to
(33). A given value of a,o corresponds to the amplitu(lo of
the ith mode of longitudinal oscillation, and if this value of
am is not equal to O, then equation (34) simply gives the
frequency of this longitudinal mode. Consequently those
equations in equation (32) for values of j= O nre not assoc-
iated with traz&erse bending and so are ignored henceforth,
For the remaining values of j (that is, j#O) equotion (32)
yields .

–~ $ A~j

b,
(’i=l,3,5, $.$)

ail= kB2B~+~J% (j=l,2,3, ...) (36)

Substituting the expression for a~, in equation (36) into
equation (31) and solving for bi gives

(– 1)=:. kB2C+~
b’=

iv,
~ (i=l,3,5j . . . ) (36)
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In tlm appendis’ this expression for N, is shown to be equivalent to
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(37)

(3s)

Simmthe series in equation (38) is considerably more quickly convergent than that in equation (37), equation (38) should be
used in actual numerical calculations of Nt.

Substitution of equation (36) into equation (3?) and the constraining-relationship equation (19) gives the followhg two
homogeneous equations in C and k

(39a)

(39b)

Finally the condition for a nontrivial solution for C and A gives the frequency equation

e21
l+kB2 ~ (–l) ‘ ---m

n-1,8$

which tlm frequency parameter kn must .9f&@. Since the
terms of the in6nite series which appear in the frequency
equation contfiin k“ itdf, the roots of equation (4”) me most
conveniently found by trial. Fortunately the intinite series
in equation (40) as well m the series in the definition of Nt
converge rapidly so that only a few terms are needed to
evahmte them with sufficient mm.racy.

Onto k. has been determined for a particular mode, the
corresponding mode shape can be found by letting C= 1 and
solving either of equations (39) for x and then iimdly evaluab
ing b{ and a,j successively from equations (36) and (35).

Free-free beam—symmetrkd modes.—~ the origin of a
free-free beam of length 2L is taken at the midspan (see fig.
1), the form of the Fourier series assumed for w(z) and W(Z,S)
when the beam is undergoing a symmetrical mode of vibra-
tion may be exactly the same as that assumed for the
cantilever beam of length L (see eqs. (15) and (16)). The
only difference in the ensuing calculations is that the con-
straining condition (19) is not introduced. Consequently, it
can bo readily seen that the frequency equation for the

I
=0 (40)

ii% “
U=IW Nx

symmetrically vibrating free-free beam is obtained horn
equation (39a) by setting k= Oand is

[ .=I,3,GNJ=”kB2 1+kB’ ~ (41)

After a particular root k. is found from equation (41), the
shape of the corresponding symmetrical free-free mode mny
be obtained horn equations (36) (with A=O) and equations
(35).

Free-free beam—utisyrurnetrical modes,-C!onsider a
free-free beam of length 2Z undergoing antieymmetrical
vibrations. llkplicit consideration need be given only to the
&ht half of the beam (see fig. 1), and for this half-beam the
only geometrical boundary condition that must be imposed
is that w(O)= O. ‘I’he spanwiae displacement u(O,S) is unre-
strained by virtue of antisynrnetry.

Appropriate assumptions for the displa”~ents w(z) and
u(z,s) are then

7-LZ-Z
w(x)= 2 1)=Sin=+cx

n-&4,6 *
(42)
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and

(43)

The linear portion C%of the expressionfor w(x) is needed in order tc give the beam sufkient freedom at the tip (x= L).
The choice of the particular trigonometric function in the series expansion for U(Z,S)was, as in the case of the cantilever
beiun, guided by consideration of the orthogonality required for the simplification of the expressions in the strain energy.
The zeroeth term in the series for U(Z,S)in the direction was omitted because it only leads to the frequency equation for
longitudinal oscillations.

Using equations (42) and (43) in equations (5) and (6) yields

(44)

The variation of equation (44) with respect
b’s, and C gives, after suitable simplification,

1

(Bi2kJ+I@j~ aij–~ & AJjbi=O (:=2,4,6, .
Q=1,2,3, ;

[ ()1
lP3>-k.g2kiwskB2: p AjjC= OQ-p ~

to the a’s,

: :; (45)

(– 1)’/’& k.’CL=O

(j=l,2,3, . . .) (46)

b,+; kJ b~–

(i=2,4,6, . . .) (4~

From equation (45)

E -&Aj~j
b, ({=2,4,6, . ..) (49)

“j=B?k&+B?j’ (j= ~, z, a, ~
. . .

which, except for sign, is the same expression as that ob-
tained for the cantilever and symmetrically vibrating free-
free beams (eq. (35)). From equation (46)

P‘$ Ajj
~ C (j=l,2,3, . . .) (50)

‘j=Bozks2+P~

Substitution of equation (49) into equation (47) gives

b,=–(–1)’l’ +% CL (i=2,4,6, . . .) (51)

where lVt is defined in equation (37).
Substitution of equations (50) and (61) into equation (48)

and simplification gives as the frequency equation for the
antisymmetrically vibrating free-free beam

(62)

Aftbr a particular value of k. is foupd from equation (62),
the shape of the corresponding antisymmetrical free-free
mode may be obtained by giving C the arbitrary value of
unity and calculating the b’s and a’s successively from
equattins (51), (5o), and (49).

Discussion of parameters.-The parameters onterin~ in
the frequency equations merit discussion. The unknown
natural frequency is contained only in the frequency co-

4
m.

efficient kD, which is defined by the formula u=k~
p

and is in common use in beam-vibration analysis. The
parametim ks and km are identical with the shear and
inertia parameters deiined in reference 4, which considers
the effect of only transverse shem and rotary inertia on
beam vibrations. The quantity As which appeara in the
present definition of ks is actually the effective shear-carrying
area when plane sections are constrained to remain plane;
that is, when shear lag is neglected. The remaining param-
eters appearing in the present derivation, namely, A/As,
K, and Al, A2, . . . are essentially shape parameters which
actually depend only on the contour of the cross section;
as shown in the appendix,

and the A“’s are simp~y the Fourier coefficients of the
function sin O,which is dependent only on the shape of the

.-.
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cross section. These shape parameters are related to
lag effects and their interaction with transverse
and longitudinal inertia.

HOLLOW

shear-
shear

The effect of longitudinal inertia is associated with the
parameter )&. If the effect of longitudinal inertia is to be
neglected, it is sticient to set k~ equal to zero ~ tie fi~
fiequcncy equation. If km is eqtial to zero, B, becomes in-
dependent of k=. Appreciable simplification in a tri&and-
error solution for the natural frequency then results since,
with Bt independmt of kB, the iniinite summation contained.
in Ni is also independent of k~ and need be calculated only
once for any particular beam. h is shown in the following
section, the effect,of disregarding the influence of longitudinal
inertia may often be negli@blo.

Without presentation of details, it maybe mentioned that
for the cnse of a circular cylinder, which has no shear lag,
all the An’s except Al vanish and the frequency equations
(40), (41), and (52) may be put inta closed forms identical
to those given in reference 4. Again, if in the general fre-
quency equations k.g is set equal to zero, the equations may
be put into closed forms equivalent to those of reference 4
where only rotary inertia is considered.

I 1
RESULTSFOR CYLINDRICALBEAMS OF RECTANGTJL4R

CROSSSECXION

In order to show quantitatively the effects of shear lag,
transverse shenr deformation, and longitudimil inertia on
tile natural frequencies of ho~ow thi.n-wakd cyh.ndrical

m-wAILED OYLRTORICALBEAMS 491

beams, numerical calculations have been performed for
cylindem of rectanggar cross section oscillat’hg as free-free
beams. The calculations have been limited to symmetrkd
modes of viiratio~ and consequently the frequency equation
(41) is applicable. For rectangular crow sections the quan-
tity N~maybe put into closed form as shown in the appendix,
and this closed-form veraion of Nf was used in the calcula-
tions. A value of E/G equal to 2.65 (appropriate for
aluminum alloys) was assumed.

The results of these calculations are shown in figures 2; 3,
and 4. In figure 2, the ratio of the natural frequency a to
the natural frequency w obtained from elementary beam
theory is shown as a function of the plan-form aspect ratio
L/b for cross-sectional aspect ratios of 1.0, 3.6, and co.
The contribution of each of the secondary effects to the total
reduction in the natural frequency for the cross-sectional

aspect ratios :=3.6 and 1.0 can be seen in figures 3 and 4,

respectively. The cross-sectional aspect ratio of ~= ~

corresponds to the limiting case of a beam where the effects
of transverse shear deformation and longitudinal inertia are
negligible and therefore the reduction in natural frequency
is due entirely to shearkg.

The dashed lines in figures 3 and 4 show the reduction in
frequtmcy due to the inclusion of the effect of onIy transverse
shear deformation as obtained from reference 4.

The long- and short-dash lines are calculated from the
frequency equation (41) with km=O and consequently
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I’murm 2.—ChangI3 in the natural frequency of a symmetrically vibrating free-free oylinder due to the inol~on of secondary effeots.
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Effects included
.—— Transverse shear (ret 4)
—-_ Transverse shear and sheer log

Transverse shear, sheer Io% and
longitudinal inertia

I I I I I I
6 10 [4

Ub

Fmmm 3.—Contribution of transveme shear deformation, shear lag,
nnd longitudinal inertia to the reduafiion in natural frequenoy for

:=3.0.
.

‘ represent the reduction in natural frequency when both shear
lag and transverse shear deformation are taken inta account.
Thus the hatched area between the dashed and the long- and
short-dash lines may be considered as showing the additional
reduction in natural frequency when the influence of shear
1% ~ ~~idered. Finally, the solid lines are calculated with
km taken into account, and consequently the shaded area
shows the additional ‘influence of longitudinal inertia in
reducing the frequency.

Examination of figures 3 and 4 and the curves for ~= m in

figure 2 shows that the influence of shear lag increases as the

~3d synrnefrical

Y Effects included:
Y

/

/

——— Transverse sheor (ret 4)
—-— Trwsverse slwor and shear log

Transverse sheo; shear log, and
longitudinal inertia

i I 1. I 1. I
.6 10 14

M

I?nx& 4.—Contribution of transveme shear deformation, shear lag,
and longitudinal inertia k the reduotion in natural frequonoy for

“b:=1.0.

cross-sectional aspect ratio increases; whereas the influence
of transve~e shear and longitudinal inertia decreases with
increasing cross-sectional aspect ratio. Indeed, it nppm.rs

from the results for :=3.6 that for this aspect ratio the

effects of longitudinal inertia may already be considered
practically negligible.

A word of caution concerning the interpretation of figures
3 and 4 may be in order. Since in some crisesthe depth of
the hatching increaseswith increasing L/b, itmight appear, at
fit glance, that.the shear-lag effect increaseswith increasing
plan-form aspect ratio. However, if the additional eflects
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of shem lag are considered on a percentage basis with tthe
dashed line as rLbase, it will be found that shear-lag effects
actually reduce in percentage with increasing L/l). A similar
criterion should be used in judging the influence of longi-
tudinrd inertia.

CONCLUDINGREMARKS

The numerical calculations ‘show “that secondary eifecta
have appreciable influence on the natural frequencies of
rectangular box beams of uniform wall thiclmess. These
rcmlts constitute an indication of the probable inadequacy of
elementary beam theory for the vibration analysis of actual
aircraft structures of the monocoque and somimonocoque

TEIN-wALraD CYLINDRICAL BEAMS 493

type and emphasize the need for practical calculation pro-
cedures for such structures that would take into account
transverse shear deformation, shear lag, and, when necessary,
longitudinal inertia. The general solutions presented for
cylinders of uniform thickness, aswell as the numerical results
for rectangular box beams, should be useful in the assessment
of the accuracy of any procedure Of this kmd that may be
developed.

LANGLDY AERONAUTICAL LABORATORY,
hTATIoNAL ADVISORY COMMITTED FOR AERONAUTICS,

LANGLEY I?IDLD, VA.) Janua~ 21, 1962?.

APPENDIX

TRANSFORMATIONOF PARAMETERS

Expressions for As/A, I, and ~.—ll sin $ is expanded into
a Fourier series

%r8
sine= ~ A=sin — (Al)

n-1,2> P

the Fourier coefficients An are the same as those defined in
equation (24); that is,

(A2)

The effective shear area & (eq. (25)) can now be written
as a function of the Fourier series expansion for sin d as

(A3)

With the use of the appropriate orthogonfdity conditions,
equation (A3) becomes, after the integration is performed,

(A4)

The moment of inertia 1 of a cylinder is defined as (see
@g. 1)

sI= &t &–A~2 (A5)

where ~ is the y-distance to the center of gravity of the cross
section.and is given by

But

J‘y-tisg= o
pt

JY= ~’Sineas

(A6)

(A7)

or

and, consequently,

(A8)

(A9)

With the use of equations (A8) and (A9), the expression
for I in equation (Ah) becomes

(A1o)

With the seriesexpansion for I in equation (A1O), the param-
eter l?, as defined in equation (29), becomes

(All)

!l’ransformatioi of expression for 11,,-In equation (37)
N, was def.ned as

The infinite series that appears in this exption converge9
as Ans and therefore is a relatively slowly converging series.
In order to increase its. rate of convergence, the following
transformations are made. ”

By adding. and subtracting An’/= inside the infinite
summation in equation (A12) and usirg equation (A4), the
equation simplifk to

By adding and subtracting An~jlFn’ inside the infinite
summation in equation (A13) and using equation (All), the
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expression for iVt can be transformed
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ta

N,=%B:
A=’

–: k~g (A14)‘~& “’ks’~.~,,~ K%’ (ks2Bi’+K%.? 2

The infinite series in equation (AI4) converges as AQ/n4and therpfore is considerably more quickly convergent than the
series in equations (A12) and (A13), which converge as A=* and Az2/n2,respectively.

Closed form of N, for cylindrical beams of reotangukr moss section.-For a
section, with dimensions as shown in &ure 2, it is possible ti write the expression
elms for such a cross section become

As=4at

.. A=4((z+b)t=pt

An=O (n even)
1

or

4
=--& Cos % (n odd)

J

Wkh equations (A15) tie parameter ~i show-nin equation (AI2) becomes

cylindrical beam of rectangular cross
for iV, k a closed form. The pnram-

.

f (Al 6)

(A16)

(A17)

Each of the iniinite summations in equation (A17) can now be written in closed form as shown in reference 6, and the
closed exrmssion for N{ then becomes .

(A18)

1.
2.
3.
4.
5.
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